
Technical Design Document
_______________________________________________________________________

DMED 521, Projects II

Alpha Squad Adventures

Developed By

Denis Morozov Bob Kreut Chelsea Chang Bensson Wu Yuxin Wang

Project
Manager

Technical
Artist

Game
Designer

2D
Artist

Game
Developer

In collaboration with



Table of Content
Table of Content 1

Introduction 3

Get Started 3
Setting up Source Control 3
Installing Unreal Engine 3
Installing Android Studio 3
Installing Apple Software 3

Unreal Engine 3
Architecture 3
Plugins 4
Connecting to Source Control 4

Blueprinting System 5
Setting Up AR Project 5
Interfaces & Emotion Grid 7

Designing Widgets 7
Coding Widgets 9
Global Variables 11
Emotion Grid 13

AR Camera-On Mode 14
Activating Camera 14
Plane Detection 14
Spawning & Transforming Actors 14
Basic Interactions 15
Pop Up System 17

AR 360 19
Creating 3D Map 19
Spawning player in AR 360 19
Detecting Players’s Position 19
Random Triggers for Mini-Games 19
Mini-Games 21

Emoji Game 21
Energy Game 23

Post-Game Feedback 26
AR Explore 27

1



Coala Back-End 27
Points of Interest (PoI) 28
GPS Detection & GPS Map 30

2



Introduction
This document breaks down the processes of setting up the source control, unreal engine, and
how to use the existing blueprints.

Get Started
Setting up Source Control
Needs more detailed info

1. Create an account on GitLab
2. Start a new project
3. Connect the Project to Source Control
4. Push the Project to Source Control

Installing Unreal Engine
1. Download Epic Store
2. Download & Install Unreal Engine 4.26.1

Installing Android Studio
1. Download Android Studio 3.5.3 from the following link;
2. Follow this easy to use official guide.

Installing Apple Software
1. Install XCode from the AppStore

Unreal Engine
Architecture
There are 2 primary folders in the project:

● Content for all non-GPS blueprints, assets, textures, materials and everything else;
● ThoughtfishCoalaPlugin Content contains all GPS-related items.

3

https://androidstudio.googleblog.com/2019/12/android-studio-353-available.html
https://docs.unrealengine.com/en-US/SharingAndReleasing/Mobile/Android/Setup/AndroidStudio/index.html


Plugins
The game utilizes the following plugins:

1. Coala GPS Plugin
2. Apple ARKit
3. Google ARCore
4. Google ARCore Services
5. Mobile Location Services

Connecting to Source Control
1. Click Source Control in Unreal Engine and select Connect to Source Control;

4



2. Select the software of your choice and click Accept Settings;

3. Source control is successfully set up and the changes can be pushed and pulled.

Blueprinting System
Setting Up AR Project

● The project is based on the Handheld AR Template. Because of this, many of the
plugins and settings are already enabled for AR.

● The AR360 mode and AR Camera-On mode are set up to use different SessionConfig
files so they are capable of having different settings applied to them for gameplay.
However, currently they are both using the same settings and the only change is Vertical
Plane Detection has been disabled so aliens won’t spawn on walls.

○ “Use Scene Depth for Occlusion” was enabled so aliens would be occluded by
real world objects, but this caused crashing to occur on Android devices so it
was disabled again

○ The AR Gameplay Component Classes are using the Engine’s AR Classes for
planes, points, face, etc.

5



● Starting the AR Session is found in the BP_Pawn of the level
○ Because of an Android Specific bug with Unreal 4.26.1, it is not possible to start

and stop the AR sessions. Code should be added on Event End Play to Stop
AR Session once the bug is fixed to save battery life.

○ This bug is also the reason why AR is still enabled in the AR-Explore Mode

6



Interfaces & Emotion Grid
All interface elements are designed and blueprinted using the Widget Blueprints. All namings of
these widgets start with BPW_[Name]. The Widget Blueprints consist of 2 modes: Designer &
Graph - that can be selected from top right corner

Designing Widgets
A typical widget in the game uses the following items:

● Overlay - blocks player input behind its area
● Border - background
● Buttons - clickable areas
● Images
● Vertical & Horizontal Boxes - easy way to group the buttons
● Progress Bar
● Text

7



When creating a button, the following items need to be filled:
● Size & Margin (to be set to 0, default is 0.25)
● Normal, Hovered & Pressed Images for buttons
● Tint - change image color to create an illusion of a new icon

8



After creating and grouping the buttons/objects/images, they need to be anchored. When
archoned, they will be moving proportionally to the assigned point when the screen is resized
on different devices.

To create an event for when the player interacts with the button, scroll to the bottom of the
details page and select the event you want to set up. After clicking on the +, you will be
redirected to Graph Section

Coding Widgets
Continuing with BPW_ARCameraOn_Buttons as an example, let’s navigate to the Graph
section. It consists of the functions, which are custom events called by the blueprint and Event
Graph, the main work space to create interactive interfaces.

9



Using OnClicked as an example, the click of a button will cause a sequence of the following
events to play out. In the example below:

1. Play a sound when the button is clicked
2. Remove all Widgets from viewport
3. Create new Widget for the selected activity
4. Add Widget to the viewport
5. Play animation on the Alien
6. Hide Alien profile (in case the player is viewing the Alien’s profile when clicking activity)

10



A more complicated example is how we spawn Alien profile in AR Camera-On Mode:

1. Play a sound when the button is clicked
2. Create an IF statement to check if the Profile is turned on

a. If the Boolean Info Spawned is false spawn all actors separately
b. If True, hide it with Toggle

3. For the false branch, each actor is spawned at a different location, based on the Alien’s
position in the environment.

4. After spawning all actors, set the Boolean Info Spawned to True, so that when the
button is clicked again, the profile will be hidden

Global Variables
The global variables are the ongoing variables when using the game modes or globally playing
the game. There are 2 ways to access them from separate actors and widgets:

● BP_GameInstance - an actor that is always played when the game is launched. It stores
important global variables such as Emotion Variables of Aliens, Warning Message,
Energy, Timer and all additional variables to be added in the future

11



● Another method of extracting variables is by using Get All Actors from a Pawn. It
functions in the following way:

○ Create Get All Actors blueprint
○ Use Get (a copy) to get all variables from the blueprint
○ Get the variables you need (don’t forget to disable Context Sensitive)
○ The example below shows how to access Skeleton Mesh from ARPawn

12



Emotion Grid
The emotion grid is stored in BPW_EmotionGrid. It consists of images for emojis, background
and Fillers, which are hidden and only opened depending on the value of emotion variables.

The complicated graph for emotion grid consists of 3 main sections:

1. Check the BP_GameInstance for 4 emotion variables
2. Hide/Unhide Fillers based on the Variables
3. If variables are outside the 1-5 range, change it to the closest value. If the variable = 3,

hide all fillers of the section
4. Change Emoji based on the current variables:

a. If 1-3 then Negative Emoji
b. If 4-5 then Positive Emoji

5. This sequence of actions is created into the Custom Event - EmotionGrid. Everytime
EmotionGrid is called, it runs all of the code and showcases the results.

13



AR Camera-On Mode
AR Camera-On mode represents interaction with the alien in the real world.

Activating Camera
For consistency, turning on the AR-Camera is done on the Player Pawn for each level. There is
a bug with Android and Unreal 4.26.1 that prevents the camera from being turned off, but an
Event End Play should be added with a Stop AR-Camera to turn off the camera when the
player leaves the level. This will save battery life.

Plane Detection
Plane detection is done through the code created by the Handheld AR template. No further
alterations were done to this code.

Spawning & Transforming Actors
The alien is spawned with the SpawnActor blueprint. It has 2 mandatory requirements: Select
Class and get Spawn Transform input. To spawn the alien in front of the camera we use the
following options:

1. Get Local to World transform (Trace of your camera)
2. Break the position into location, rotation and scale to change the relative variables of

the alien
3. In our case we rotate the Alien on Z axis by 180 degrees to make the Alien face the

player
4. With Make Transform we change variables back into one stream
5. We connect the variables to the SpawnActor, and now the alien will be spawn relatively

to the player

14



Basic Interactions
There are 5 basic interactions in the game, stored in Interfaces -> AR_Camera-On folder: feed,
gravity, play, portal & socialize.

A typical interaction uses the following structure (Feed is used as an example):

1. Remove all Widgets and add Feed Widget to viewport

15



2. When the Widget is constructed, get actors from BP_ARPawn and cast to
GameInstance to get all variables, and spawn the cloud on top of the alien relatively to
its position in ARPawn.

3. When the button is clicked, play a sound and assign a True/False value to Round 1,
depending if the player chose the correct answer

4. When the Done button is clicked, IF branch checks if the answer is correct or not. If the
answer is wrong, the player gets an Activity Failed feedback and -10 values. If true, the
opposite.

5. Initiate post-interaction feedback with relevant information about the activity.

16



Pop Up System
Pop Ups are stored in BPW_PopUps. They use images that can be changed with the use of Set
Brush from Texture.

The blueprints load the correct texture, corresponding to the emotion that was changed, uses
IF branch to determine if +10 or -10 needs to be shown and adds animation with the use of
Play Animation.

1. Feedback page
2. Pop-up symbols

The pop-up symbols are in order to make the emotion/trust changes made by the
interaction more intuitive and obvious to the player. Once it returns to the camera after
the feedback page, pop-up symbols for specific emotions and trust along with the value
based on that interaction result will be displayed.

○ Those pop-ups are created as widgets. Each interaction is associated with
different emotions, so the type of the emotion symbol has to be reset to the
correct texture. The variable “emoji_type” in BPW_PopUps blueprint is used to
find the correct texture and then the texture will be applied to the emoji widget
by “SetBrushFromTexture”. It’s the same idea with the value widget. Whether

17



there is an increase or decrease in the trust value is set in the interaction
blueprint by the variable “trust_res” and the texture is changed respectively.

○ There is some animation added to the pop-up widget. By using the timeline
feature of the widget blueprint, it is able to make the emoji symbols fly to the
emotion grid and the trust symbol fly to the trust bar or even animate the size of
the widget. This widget animation feature is really flexible and useful!

○ Involved blueprints: BPW_PopUps, BPW_Feed_Interface,
BPW_Gravity_Interface, BPW_Play_Interface, BPW_Portal_Interface,
BPW_Social_Interface.

18



AR 360
AR 360 mode represents the player being able to walk around and view a 3D environment in
360 degrees.

Creating 3D Map
When laying out assets for the AR360 mode, care should be made for the purpose of the level.
If the player is supposed to be able to move around the environment and look behind many 3D
objects to find hidden things, then the environment should be made within a smaller space.
Unreal works in centimeters, so a 200 unit wide room would allow for easy movement within a
typical play area for a child. If instead, you don’t want the player to be able to explore too
much of the 3D environment, making the room bigger would prevent them from accidentally
running through 3D walls or outside of the intended zone. Once the room is laid out, be sure to
assign a Game Mode Override on the World Settings page so that your correct pawns spawn
into the map.

Spawning player in AR 360
The player will spawn at the Player Start of the map. Position the arrow in the direction that
you want the Pawn to be facing when loaded into the level. Placing the Player Start at a
position between 100-140 units in +Z provides a good “eye level” for the player. The pawn that
gets spawned in is define in the Game Mode assigned in the Game Mode Override in World
Settings.

Detecting Players’s Position
When the level loads, the game will need a few moments to detect where the ground plane and
walls are. Unless the game has this information, shifting and swaying of the room might occur.
This is the main reason for why we use the Scanner in order to find the aliens. It gives the
game some time to scan the room and detect where the floor is. For developing other games,
it is recommended to find a way to have the player scan the room before spawning anything in
such as turning on the AR Camera during an intro scene or tutorial screen before the gameplay
begins so it can scan the room in the background. It also helps to have the camera move
towards and away from the player in order for the app to have a good sense of the depth of the
room.

Random Triggers for Mini-Games
Our goal is to make the game flow more clear and natural for the player. Therefore, we added
this random mini-game trigger in the AR 360 maps. When the player enters the AR 360 map,
either the energy game or the emoji game will be spawned with a 50/50 chance which is
decided by a random integer in the blueprint.

19



To make things simple, the way to spawn the game here is not by calling spawnActor. Instead,
it is done by just setting the game actor in the map to unhidden.

There is a boolean for both games to indicate if this game has been played yet
(“shipEnergyPlayed” & “shipEmojiPlayed”). When the first random game is triggered, the
corresponding boolean will be set to true. Then when it returns to this map from that game, we
know now it’s time to play the other game. Or if both games are already played, a happy
animation will be played on the alien and both game widgets are unhidden.

20



Mini-Games
Mini-Games are initiated in AR 360 environments.

Emoji Game

Emoji Game is initiated and contains all of the blueprints in BP_Squiggle_Emoji_Game. It has
the following structure:

1. Spawn the Alien with Scale and Spin Animation & play a neutral animation

2. Spawn a text cloud on top of the alien, relative to its position and wait for the player to
read the instructions

3. Spawn a new text cloud with a small story and play the animation corresponding to the
cloud

21



4. Spawn a text cloud on top of the alien, relative to its position and wait for the player to
read the instructions. Loop the IF branch until the player makes a selection, keep
checking if something is clicked with Boolean OR check. When something is clicked,
check if the correct emoji is clicked with IF branch. Use Set Brush from Texture to show
a Tick or a Cross, depending if the answer is correct or now. Reset the Boolean of emoji
selection and repeat Steps 3&4 three times.

22



5. Check how many rounds were correct and display relevant information if TRUE.

6. Get feedback when you finish the activity.

Energy Game

There are several key features of this mini game that are implemented:

1. Energy spheres are spawned around the alien in space (of the desert or ship AR 360
map). A WhileLoop is used to spawn 15 energy actors. This number can be adjusted by
setting the condition of the loop. For the location of each spawned energy, it is
calculated by a function “computeSpritePosition”. In order to put the energies in a
random location, the function adds a random offset to the xyz coordinates of the energy
actor. The range of the random offset is set according to the space range of the AR360
environment so that the energies will not be spawned outside of the desert or ship.
Hence, this range can also be adjusted if the size of the environment is changed. The
related code is in the BP_EnergyCatch blueprint.

23



2. After an energy is spawned, it will have a simple moving-around animation. This is
achieved by the function “moveAround” (*). This function just updates the energy to a
new position by adding some offset to the original position. How large this movement is
can be controlled by setting the offset which is generated by the RandomInteger node.
The related code is in the BP_EnergySphere blueprint.

3. When the energy actor is at the center of the screen as the player moves the camera
around, the color of the energy will be changed into blue. Or else it will be the original
color. This is achieved by a function “checkWithnCamera” (*). The node
“projectWorldToScreen” returns the screen location of the energy actor which can be
used to check if that’s around the screen center (i.e., if the energy is within range to
change its color). The related code is in the BP_EnergySphere blueprint.

24



4. When an energy is caught, the variable “numOfCaught” of the BP_EnergyCatch class
will be updated and this will be reflected on the “Energy Caught” text by the
“updateNumOfCaught” function. Moreover, an animation will be played on the energy:
the size is blown up first and then minimized to disappear and the energy will fly
towards the screen first and then fly to the alien. This is done by the timeline
“MoveToPlayer” which controls the path by “MoveTo” component and size of the
energy by “Scale” component. The related code is in the BP_EnergySphere and
BPW_EnergyGame blueprint.

5. For this mini game, there is a time limit which can be adjusted by the developer. The left
time is shown on the screen. When the time is up, the game will end. And then the
different results (feedback) will be displayed based on whether you win or lose the
game. The function “checkIfTimeOver” (*) will check if it reaches the time limit. The
related code is in the BP_EnergyCatch and BPW_EnergyGame blueprint.

25



(*) Remark: Those functions are called every second by the “SetTimerByFunctionName”
because the corresponding actions are expected to run every second.

Post-Game Feedback
When the game is completed an interactive feedback page is displayed. It uses EmotionGrid
widget and changes zeros around the graph to correct variables.

26



When clicking the Continue button, the player will be sent back to the level, where the player
came from, using global instances. If the game was initiated from the Ship, the boolean In Ship
will be true, same applies for the rest of the variables. If all are false, then the player is returned
to the main menu (if the game was accessed through debug in the main menu).

AR Explore
This section breaks down the usage of Coala Plugin and required blueprints.

Coala Back-End
In the back-end, the developer can add and design any type of POIs. Under the “Points of
Interest” tab, you can modify the normal POIs of your Coala map. By setting the Coala POI tag,
the landmark of this POI can be defined. There are also other properties of the POI that can be
self-defined like country, weather and time so that this POI will only appear when the
conditions are met.

27



Under the “Custom Data” tab, the developer can define any custom POI which has its own
geo-position. Then that POI will be displayed at that location on the Coala map.

For more explanation and details, please check the documentation provided by Coala:
https://sites.google.com/a/thoughtfish.de/coalapluginunreal/coalabackend

Points of Interest (PoI)
Both the normal POIs and custom POIs can be controlled in the papermap under the
BP_Coala component of the Coala plugin.

28

https://sites.google.com/a/thoughtfish.de/coalapluginunreal/coalabackend


Here you can use the POIs from the Coala backend. To add more Pois, click the plus sign
besides the “Map elements”. Then the Pois will be added to the map automatically. One
reminder is the name of the Poi configuration should match the one you want to use from the
backend: for custom Pois, it should match the label name; for normal Pois, it should match the
POITag name. Then the plugin is able to get the correct data of that Poi. And you can also set
any blueprint class to be the blueprint of normal Pois. However, you could only use the
BP_Custom_Poi (or its child blueprint) for the custom Pois. This is a known limitation of Coala.

In our papermap, there will be a normal Poi that’s spawned at some random interval and within
a random range around the player’s location. This is handled by the function “SpawnAlien” in
the PaperGameMode blueprint.

29



GPS Detection & GPS Map
The GPS technology is handled by the Coala plugin. The only thing we need to do here is to
ask GPS permission from Android devices in the level blueprint of Papermap. And then the
plugin will use the GPS information from the device to adjust the map.

30


